Reply |
Message 1 of 10 on the subject |
|
|
|
First
Previous
2 to 10 of 10
Next
Last
|
Reply |
Message 2 of 10 on the subject |
|
|
|
Reply |
Message 3 of 10 on the subject |
|
|
|
Reply |
Message 4 of 10 on the subject |
|
|
|
Reply |
Message 5 of 10 on the subject |
|
June 22 DC Metro subway trains collide - 9 dead, 80 injured
Timeline: June 18-24: Gov. Sanford missing/crying in Argentina June 21: 'Impact' Part 1 on ABC; Prince William birthday June 22: DC Metro Red Line trains in collision June 23: US Moon probes (LRO/LCROSS) reach Moon June 24: Gov. Sanford reveals Argentine affair June 25: Death of Michael Jackson & Farahh Fawcett
'Metro' means 'meter' in Spanish, Italian, Portuguese, etc. The meter is historically defined as 1/10,000,000 of the distance between the North Pole and the equator through Paris, or in other words the Paris Meridian between the North Pole and the equator. The Paris Meridian is also the 'Rose Line' (an esoteric concept popularized by The Da Vinci Code) i.e. a 'Red Line'...

DC Metro Red Line = French/Columbian Rose Line
...traditionally implying the Blood Royal/Sangraal or the Marian/Columbian Bloodline of the Holy Grail.
In Bloodline of the Holy Grail Laurence Gardner writes of the House of Stuart, the royal bloodline to which Princess Diana and her children belong (pp. 344-5):
https://www.goroadachi.com/etemenanki/moonwalker.htm |
|
|
Reply |
Message 6 of 10 on the subject |
|
A greenstone boulder in Lakeside Park

Lakeside Park holds a scattering of boulders and plaques. The plaques are always interesting, and sometimes so are the boulders. This one sits at the west side of Bandstand Cove by a grove of redwood and oak trees. I can tell at a glance — the greenish color, even texture and lack of sedimentary fabric — that this rock consists of metamorphosed lava, informally called greenstone. There’s a lot of it in the Coast Range. There’s also some in the Sierra foothills, and I suspect that this was quarried over there.
One side of the boulder displays a nice slickenside, a sign that the rock was cracked and wrung underground.

Emily Brodsky down at UC Santa Cruz studies these fault surfaces and has been finding deep clues in them (see the latest paper from her team).
Elsewhere the boulder shows stretch marks — little extensional fractures filled with quartz. Like a run in a stocking, these are evidence of the stresses that affected this body of material once upon a time. Since the boulder has been ripped out of its original setting, these scrape marks and stretch marks have lost their geological meaning, but they’re still pretty.

Oh yeah, the boulder has a message on it. The plaque announces that the three fountains in Lake Merritt were installed or renovated by Madeleine and Andrew Wong as a gift to the people of Oakland.

The plaque in the photo, circa 2016, was stolen and has since been replaced.

And not least among its functions, the boulder punctuates the most peaceful view on the whole lake, whether the fountain is running or not.

Lake Merritt needs a lot of human management to stay clean and pleasant, and the fountains are a key part of that.
https://oaklandgeology.com/2016/07/25/lakeside-park-greenstone-boulder/ |
|
|
Reply |
Message 7 of 10 on the subject |
|
WASHINGTON D.C 77 WEST+NEW DELHI 77 EAST=154
|
|
|
Reply |
Message 8 of 10 on the subject |
|
París te espera. Te propongo un paseo juntos por el Barrio Latino, Montmartre, Saint Germain, los Campos Elíseos, el Marais o sobre las aguas del Sena. Tú eliges.
La imaginaria Línea Arago, el meridiano de París.
Desde muy antiguo, el hombre ha querido poner límites geográficos a la Tierra y ha evidenciado una innegable necesidad de introducir magnitudes de medición que permitan a cartógrafos, geógrafos e, incluso, astrónomos tener una posibilidad de situar un punto con exactitud en nuestro planeta.
Hasta 1884, momento en que se celebró la Conferencia Internacional del Meridiano, eran varios los puntos de partida utilizados para medir la tierra hacia derecha e izquierda. En este momento se tomó como medida universal el Meridiano de Greenwich, el meridiano cero, el punto desde el que se habrían de medir todas las distancias en la tierra en el sentido este-oeste. Pero este meridiano no fue el primero ni el único que existió en nuestro planeta.
Medallón Arago situado entre el 152 y el 154 del Boulevard Saint Germain .
Uno de los más conocidos hasta entonces fue, precisamente, el Meridiano de París, una línea imaginaria cuyo punto cero pasaba por el Observatorio Astronómico de la ciudad.
Hoy nos vamos a referir a esta línea imaginaria que, con el paso del tiempo y a modo de homenaje, ha tenido su réplica sobre el pavimento de París. Más aún después de que Dan Brown publicara su célebre obra «El Código da Vinci» en el que se le menciona en varias ocasiones identificándola (erróneamente) con la Línea Rosa.
Hablemos del autor de este meridiano de París.
François Arago, quien dio nombre a esta línea imaginaria, fue un astrónomo francés que nació en 1786 muy cerca de Perpignan y su familia era catalanoparlante. Su padre era un campesino acomodado que pudo dar carrera universitaria a varios de sus ocho hijos. Estudió en el instituto público de Perpignan. Mostrando gustos militares desde su infancia, se centró en el estudio de las matemáticas para preparar el concurso de ingreso en la Escuela Politécnica de París.
Medallón Arago situado en los Jardines de Luxemburgo.
En dos años y medio consiguió el nivel adecuado en todas las ciencias exigidas para el concurso de ingreso en la escuela. Fue admitido con la nota más alta de su promoción y se matriculó en la sección de artillería, pero se quejaba del nivel insuficiente de los profesores. Criado en un ambiente republicano, se negó (junto con otros alumnos) a felicitar a Napoleón con motivo de su coronación en 1804, desobedeciendo las normas de esta Gran Escuela.
En el año 1804, gracias a la recomendación de Siméon Poisson y Pierre Simon Laplace, recibió el cargo de secretario-bibliotecario del Bureau des Longitudes (Oficina de las Longitudes) del Observatorio de París mientras seguía estudiando en la Escuela Politécnica. De esta forma consiguió ser incluido junto con Pierre-Simon Laplace y Jean Baptiste Biot en el grupo llamado a completar las medidas del meridiano que empezó años antes J. B. J. Delambre. Ahí empezó su andadura en busca del meridiano exacto, un meridiano que pasaba por París. Arago tuvo la suerte de preservar todos los resultados de sus investigaciones y los depositó en el Bureau des Longitudes de París. La calidad de sus trabajos le convierten enseguida en un ciéntifico renombrado no sólo en el seno de la comunidad científica sino también en la opinión pública.
Medallón Arago situado en el Palais Royal.
En 1830 Arago, que siempre había profesado ideas republicanas, fue elegido diputado por los Pirineos Orientales y mantendrá su escaño durante toda la monarquía de julio. A ello dedicó todos sus recursos oratorios y científicos centrándose en la cuestión de la educación pública, la mejora de las condiciones de vida de los obreros, el sufragio universal, los premios a los inventores y el apoyo a las ciencias. Después de los acontecimientos de febrero de 1848 que provocaron la caída del Rey Louis Philippe I, Arago es nombrado miembro del gobierno provisional como Ministro de la Guerra, la Marina y las Colonias, y proclamó la República ante el pueblo de París.
Regresó a su puesto en el Observatorio donde prosiguió con su incansable labor científica. Casi no volvió a pisar la Asamblea, a pesar de ser reelegido diputado en 1849.
Tras el golpe de Estado de Luís Napoleón en diciembre de 1852, Arago intentó movilizar a la Academia sin éxito. Obligado como funcionario a prestar juramento al Emperador, se negó y dimitió, pero Napoleón le aseguró que no sería inquietado.
Afectado de diabetes y de problemas intestinales, falleció al año siguiente en París. Fue enterrado en el cementerio de Père-Lachaise.
Medallón Arago situado en el Cour Napoleon del Louvre.
De la importancia de este personaje han quedado evidencias en París. Hay un boulevard dedicado con su nombre que linda con el edificio del Observatorio Astronómico de París. Arago también es uno de los 72 científicos cuyo nombre Eiffel mandó grabar en las cuatro caras de la torre que levantó. Pero en París también hay un monumento con el que se le recuerda, un monumento imaginario que mide 9 kilómetros de largo y que es difícil de apreciar: la célebre línea Arago.
Esta es la historia. En 1893 se decide erigir una estatua de bronce con la efigie del astrónomo junto al Observatorio de París, sin embargo, en 1942, debido a las necesidades de construir cañones para la II Guerra Mundial, el gobierno francés la funde y desaparece.
Cuarenta y dos años más tarde, en 1994, el gobierno de la ciudad decide restablecer el honor a Arago y pide al artista holandés Jan Dibbets su construcción. Este artista, inspirándose en el célebre Meridiano de París calculado por François Arago, diseña 135 medallones de bronce de 12 centímetros de diámetros que fueron colocados en el suelo de la ciudad a lo largo del meridiano en dirección sur a norte.
Los medallones indicando la línea Arago a su paso por el Museo del Louvre.
Muchos de estos medallones han desaparecido con el tiempo, bien por robo o por pérdida. Otros se encuentran en muy mal estado y se distinguen por su forma no por ser legibles o reconocibles por algún signo. Otros muchos están en buen estado y es una tarea difícil y ardua ir en su busca.
Aquí os acompaño de un plano para quien quiera hacerlo. Armaos de paciencia porque un meridiano (aunque sea sólo sobre París) no se recorre en un sólo día.



https://aparisconelena.wordpress.com/2014/07/13/la-imaginaria-linea-arago/ |
|
|
Reply |
Message 9 of 10 on the subject |
|
El día solar medio es la duración estándar de un día, definido como el tiempo que tarda la Tierra en hacer una rotación completa respecto a un sol medio ficticio, y equivale a 24 horas o 86,400 segundos.
-
Día solar verdadero:
Es la duración del día medida con el sol real en movimiento, que varía ligeramente a lo largo del año debido a la órbita elíptica de la Tierra.
-
Día solar medio:
Es una medida promedio, un día de 24 horas, que se utiliza para la definición de tiempo civil y para cálculos astronómicos.
-
Día sidéreo:
Es el tiempo que tarda la Tierra en hacer una rotación completa respecto a las estrellas fijas, que es ligeramente más corto que el día solar medio (aproximadamente 23 horas y 56 minutos).
En resumen, el día solar medio es la base para la medición del tiempo en la Tierra, y se utiliza para coordinar el tiempo civil y otros cálculos astronómicos.
|
|
|
Reply |
Message 10 of 10 on the subject |
|
Universal Time
Universal Time (UT or UT1) is a time standard based on Earth's rotation.[1] While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle with respect to the International Celestial Reference Frame (ICRF), called the Earth Rotation Angle (ERA, which serves as the replacement for Greenwich Mean Sidereal Time). UT1 is the same everywhere on Earth. UT1 is required to follow the relationship
- ERA = 2π(0.7790572732640 + 1.00273781191135448 · Tu) radians
where Tu = (Julian UT1 date − 2451545.0).
History
Prior to the introduction of standard time, each municipality throughout the clock-using world set its official clock, if it had one, according to the local position of the Sun (see solar time). This served adequately until the introduction of rail travel in Britain, which made it possible to travel fast enough over sufficiently long distances as to require continuous re-setting of timepieces as a train progressed in its daily run through several towns. Starting in 1847, Britain established Greenwich Mean Time, the mean solar time at Greenwich, England, to solve this problem: all clocks in Great Britain were set to this time regardless of local solar noon.[a] Using telescopes, GMT was calibrated to the mean solar time at the prime meridian through the Royal Observatory, Greenwich. Chronometers or telegraphy were used to synchronize these clocks.
 Standard time zones of the world. The number at the bottom of each zone specifies the number of hours to add to UTC to convert it to the local time.
As international commerce increased, the need for an international standard of time measurement emerged. Several authors proposed a "universal" or "cosmic" time (see Time zone § Worldwide time zones). The development of Universal Time began at the International Meridian Conference. At the end of this conference, on 22 October 1884,[b] the recommended base reference for world time, the "universal day", was announced to be the local mean solar time at the Royal Observatory in Greenwich, counted from 0 hours at Greenwich mean midnight. This agreed with the civil Greenwich Mean Time used on the island of Great Britain since 1847. In contrast, astronomical GMT began at mean noon, i.e. astronomical day X began at noon of civil day X. The purpose of this was to keep one night's observations under one date. The civil system was adopted as of 0 hours (civil) 1 January 1925. Nautical GMT began 24 hours before astronomical GMT, at least until 1805 in the Royal Navy, but persisted much later elsewhere because it was mentioned at the 1884 conference. Greenwich was chosen because by 1884 two-thirds of all nautical charts and maps already used it as their prime meridian.
During the period between 1848 and 1972, all of the major countries adopted time zones based on the Greenwich meridian.
In 1928, the term Universal Time (UT) was introduced by the International Astronomical Union to refer to GMT, with the day starting at midnight. The term was recommended as a more precise term than Greenwich Mean Time, because GMT could refer to either an astronomical day starting at noon or a civil day starting at midnight. As the general public had always begun the day at midnight, the timescale continued to be presented to them as Greenwich Mean Time.[citation needed]
When introduced, broadcast time signals were based on UT, and hence on the rotation of the Earth. In 1955 the BIH adopted a proposal by William Markowitz, effective 1 January 1956, dividing UT into UT0 (UT as formerly computed), UT1 (UT0 corrected for polar motion) and UT2 (UT0 corrected for polar motion and seasonal variation). UT1 was the version sufficient for "many astronomical and geodetic applications", while UT2 was to be broadcast over radio to the public.[10][11]
UT0 and UT2 soon became irrelevant due to the introduction of Coordinated Universal Time (UTC). Starting in 1956, WWV broadcast an atomic clock signal stepped by 20 ms increments to bring it into agreement with UT1. The up to 20 ms error from UT1 is on the same order of magnitude as the differences between UT0, UT1, and UT2. By 1960, the U.S. Naval Observatory, the Royal Greenwich Observatory, and the UK National Physical Laboratory had developed UTC, with a similar stepping approach. The 1960 URSI meeting recommended that all time services should follow the lead of the UK and US and broadcast coordinated time using a frequency offset from cesium aimed to match the predicted progression of UT2 with occasional steps as needed.[13] Starting 1 January 1972, UTC was defined to follow UT1 within 0.9 seconds rather than UT2, marking the decline of UT2.
Modern civil time generally follows UTC. In some countries, the term Greenwich Mean Time persists in common usage to this day in reference to UT1, in civil timekeeping as well as in astronomical almanacs and other references. Whenever a level of accuracy better than one second is not required, UTC can be used as an approximation of UT1. The difference between UT1 and UTC is known as DUT1.
Adoption in various countries
The table shows the dates of adoption of time zones based on the Greenwich meridian, including half-hour zones.
Year | Countries[15] |
1847 |
Great Britain[3] |
1880 |
Ireland (entire island) |
1883 |
Canada, United States[c] |
1884 |
Serbia |
1886 |
New Zealand[16] |
1888 |
Japan |
1892 |
Belgium, the Netherlands,[d] S. Africa[e] |
1893 |
Italy, Germany, Austria-Hungary (railways) |
1894 |
Bulgaria, Denmark, Norway, Switzerland, Romania, Turkey (railways) |
1895 |
Australia, Natal |
1896 |
Formosa (Taiwan) |
1899 |
Puerto Rico, Philippines |
1900 |
Sweden, Egypt, Alaska |
1901 |
Spain |
1902 |
Mozambique, Rhodesia |
1903 |
Ts'intao, Tientsin |
1904 |
China Coast, Korea, Manchuria, N. Borneo |
1905 |
Chile |
1906 |
India (except Calcutta), Ceylon (Sri Lanka), Seychelles |
1907 |
Mauritius, Chagos |
1908 |
Faroe Is., Iceland |
1911 |
France, Algeria, Tunis, many French overseas possessions, British West Indies |
1912 |
Portugal and overseas possessions, other French possessions, Samoa, Hawaii, Midway and Guam, Timor, Bismarck Arch., Jamaica, Bahamas Is. |
1913 |
British Honduras, Dahomey |
1914 |
Albania, Brazil, Colombia |
1916 |
Greece, Poland, Turkey |
|
Year | Countries |
1917 |
Iraq, Palestine |
1918 |
Guatemala, Panama, Gambia, Gold Coast |
1919 |
Latvia, Nigeria |
1920 |
Argentina, Uruguay, Burma, Siam |
1921 |
Finland, Estonia, Costa Rica |
1922 |
Mexico |
1924 |
Java, USSR |
1925 |
Cuba |
1928 |
China Inland |
1930 |
Bermuda |
1931 |
Paraguay |
1932 |
Barbados, Bolivia, Dutch East Indies |
1934 |
Nicaragua, E. Niger |
By 1936 |
Labrador, Norfolk I. |
By 1937 |
Cayman Is., Curaçao, Ecuador, Newfoundland |
By 1939 |
Fernando Po, Persia |
By 1940 |
Lord Howe I. |
1940 |
The Netherlands |
By 1948 |
Aden, Ascension I., Bahrain, British Somaliland, Calcutta, Dutch Guiana, Kenya, Federated Malay States, Oman, Straits Settlements, St. Helena, Uganda, Zanzibar |
By 1953 |
Rarotonga, South Georgia |
By 1954 |
Cook Is. |
By 1959 |
Maldive I. Republic |
By 1961 |
Friendly Is., Tonga Is. |
By 1962 |
Saudi Arabia |
By 1964 |
Niue Is. |
1972 |
Liberia |
|
Apart from Nepal Standard Time (UTC+05:45), the Chatham Standard Time Zone (UTC+12:45) used in New Zealand's Chatham Islands and the officially unsanctioned Central Western Time Zone (UTC+8:45) used in Eucla, Western Australia and surrounding areas, all time zones in use are defined by an offset from UTC that is a multiple of half an hour, and in most cases a multiple of an hour.[citation needed]
Measurement
Historically, Universal Time was computed from observing the position of the Sun in the sky. But astronomers found that it was more accurate to measure the rotation of the Earth by observing stars as they crossed the meridian each day. Nowadays, UT in relation to International Atomic Time (TAI) is determined by Very Long Baseline Interferometry (VLBI) observations of the positions of distant celestial objects (stars and quasars), a method which can determine UT1 to within 15 microseconds or better.
 An 1853 "Universal Dial Plate" showing the relative times of "all nations" before the adoption of universal time
The rotation of the Earth and UT are monitored by the International Earth Rotation and Reference Systems Service (IERS). The International Astronomical Union also is involved in setting standards, but the final arbiter of broadcast standards is the International Telecommunication Union or ITU.
The rotation of the Earth is somewhat irregular and also is very gradually slowing due to tidal acceleration. Furthermore, the length of the second was determined from observations of the Moon between 1750 and 1890. All of these factors cause the modern mean solar day, on the average, to be slightly longer than the nominal 86,400 SI seconds, the traditional number of seconds per day.[f] As UT is thus slightly irregular in its rate, astronomers introduced Ephemeris Time, which has since been replaced by Terrestrial Time (TT). Because Universal Time is determined by the Earth's rotation, which drifts away from more precise atomic-frequency standards, an adjustment (called a leap second) to this atomic time is needed since (as of 2019) 'broadcast time' remains broadly synchronised with solar time.[g] Thus, the civil broadcast standard for time and frequency usually follows International Atomic Time closely, but occasionally step (or "leap") in order to prevent them from drifting too far from mean solar time.[citation needed]
Barycentric Dynamical Time (TDB), a form of atomic time, is now used in the construction of the ephemerides of the planets and other Solar System objects, for two main reasons.[21] First, these ephemerides are tied to optical and radar observations of planetary motion, and the TDB time scale is fitted so that Newton's laws of motion, with corrections for general relativity, are followed. Next, the time scales based on Earth's rotation are not uniform and therefore, are not suitable for predicting the motion of bodies in the Solar System.[citation needed]
Alternate versions
UT1 is the principal form of Universal Time.[1] However, there are also several other infrequently used time standards that are referred to as Universal Time, which agree within 0.03 seconds with UT1:[22]
- UT0 is Universal Time determined at an observatory by observing the diurnal motion of stars or extragalactic radio sources, and also from ranging observations of the Moon and artificial Earth satellites. The location of the observatory is considered to have fixed coordinates in a terrestrial reference frame (such as the International Terrestrial Reference Frame) but the position of the rotational axis of the Earth wanders over the surface of the Earth; this is known as polar motion. UT0 does not contain any correction for polar motion while UT1 does include them. The difference between UT0 and UT1 is on the order of a few tens of milliseconds. The designation UT0 is no longer in common use.
- UT1R is a smoothed version of UT1, filtering out periodic variations due to tides. It includes 62 smoothing terms, with periods ranging from 5.6 days to 18.6 years. UT1R is still in use in the technical literature but rarely used elsewhere.[25]
- UT2 is a smoothed version of UT1, filtering out periodic seasonal variations. It is mostly of historic interest and rarely used anymore. It is defined by
- ��2=��1+0.022⋅sin(2��)−0.012⋅cos(2��)−0.006⋅sin(4��)+0.007⋅cos(4��)seconds
 - where t is the time as fraction of the Besselian year.[26]
See also
|
|
|
First
Previous
2 a 10 de 10
Next
Last
|