Página principal  |  Contacto  

Correo electrónico:

Contraseña:

Registrarse ahora!

¿Has olvidado tu contraseña?

FORO LIBREPENSADOR SIN CENSURA
 
Novedades
  Únete ahora
  Panel de mensajes 
  Galería de imágenes 
 Archivos y documentos 
 Encuestas y Test 
  Lista de Participantes
 GENERAL 
 REGLAS DE ESTE FORO LIBRE 
 Panel de quejas 
 CONCORDANCIAS BIBLICAS 
 PANEL DEL ADMINISTRADOR BARILOCHENSE 6999 
 
 
  Herramientas
 
General: MAGIC HEXAGON
Elegir otro panel de mensajes
Tema anterior  Tema siguiente
Respuesta  Mensaje 1 de 1 en el tema 
De: BARILOCHENSE6999  (Mensaje original) Enviado: 19/03/2021 22:53

Magic Hexagon

DOWNLOAD Mathematica Notebook MagicHexagon

A magic hexagon of order n is an arrangement of close-packed hexagons containing the numbers 1, 2, ..., H_(n-1), where H_n is the nth hex number such that the numbers along each straight line add up to the same sum. (Here, the hex numbers are i.e., 1, 7, 19, 37, 61, 91, 127, ...; OEIS A003215). In the above magic hexagon of order n=3, each line (those of lengths 3, 4, and 5) adds up to 38.

It was discovered independently by Ernst von Haselberg in 1887 (Bauch 1990, Hemme 1990), W. Radcliffe in 1895 (Tapson 1987, Hemme 1990, Heinz), H. Lulli (Hendricks, Heinz), Martin Kühl in 1940 (Gardner 1963, 1984; Honsberger 1973), Clifford W. Adams, who worked on the problem from 1910 to 1957 (Gardner 1963, 1984; Honsberger 1973), and Vickers (1958; Trigg 1964).

This problem and the solution have a long history. Adams came across the problem in 1910. He worked on the problem by trial and error and after many years arrived at the solution which he transmitted to M. Gardner, Gardner sent Adams' magic hexagon to Charles W. Trigg, who by mathematical analysis found that it was unique disregarding rotations and reflections (Gardner 1984, p. 24). Adams' result and Trigg's work were written up by Gardner (1963). Trigg (1964) did further research and summarized known results and the history of the problem.

Trigg showed that the magic constant for an order n hexagon would be

 (9(n^4-2n^3+2n^2-n)+2)/(2(2n-1)),

the first few of which are 1, 28/3, 38, 703/7, 1891/9, 4186/11, ... (OEIS A097361 and A097362), which requires 5/(2n-1) to be an integer for a solution to exist. But this is an integer for only n=1 (the trivial case of a single hexagon) and Adams's n=3 (Gardner 1984, p. 24).



Primer  Anterior  Sin respuesta  Siguiente   Último  

 
©2024 - Gabitos - Todos los derechos reservados