Reply |
Message 1 of 86 on the subject |
|
|
|
Reply |
Message 72 of 86 on the subject |
|
|
|
Reply |
Message 73 of 86 on the subject |
|
Madrid celebra a Leonardo da Vinci y expone sus Códices y la Tavola Lucana
EFE - Madrid
Madrid celebra a Leonardo da Vinci y expone sus Códices y la Tavola Lucana
Con el objetivo de mostrar no solo al genio sino al "hombre de carne y hueso" que fue Leonardo da Vinci, la Biblioteca Nacional y el Palacio de las Alhajas conmemoran desde hoy el quinto centenario de su muerte con una exposición que ofrece dos "joyas": los Códices de Madrid y la Tavola Lucana.
"Leonardo da Vinci: los rostros del genio" es el título de la exposición que ha sido presentada hoy por su comisario, Christian Gálvez, presentador de televisión y experto en la figura del maestro renacentista, y la directora de la Biblioteca Nacional (BNE), Ana Santos, quienes han destacado la oportunidad de ver tanto los Códices, los dos únicos textos de Leonardo que se conservan en España, como la Tavola Lucana, identificada como el autorretrato del italiano.
Una exposición con dos sedes, el Palacio de las Alhajas y la BNE, con las que Madrid se une a los actos de conmemoración del quinto centenario de la muerte de Da Vinci, que se cumple el 2 de mayo de 2019.
Un gran cubo con los posibles rostros de Leonardo reciben al visitante en el Palacio de las Alhajas, una forma de reflejar "la mente poliédrica de Da Vinci y la transversalidad de su conocimiento", ha explicado hoy Gálvez en la presentación de esta exposición, que enseña cómo para él era tan importante la obra acabada como la inacabada.
Imágenes de los coetáneos de Da Vinci acompañan a reproducciones de sus principales obras pictóricas, entre las que destacan "La última cena" y " La Gioconda" y sus trabajos preparatorios, junto a sus estudios de anatomía que abordó tanto con un propósito artístico como científico.
Además, la exposición ofrece numerosas maquetas tanto físicas como virtuales de las avanzadas máquinas e ingenios ideadas por un hombre "que nunca dejó de volar con la imaginación", ha indicado Gálvez.
Tras un apartado dedicado a las posibles "caras" de Leonardo, la muestra expone por primera vez en España la "Tavola Lucana", descubierta en 2008 por el historiador de arte Nicola Barbatelli, quien ha asegurado hoy que es el único retrato que reúne todas las condiciones para asegurar que representa al maestro florentino.
Estudios de pigmentación, materiales, técnicas y detalles en el cuadro han determinado que se trataba de un autorretrato de Da Vinci, ha indicado Barbatelli.
Al mismo tiempo, la Biblioteca Nacional abre hoy por primera vez su vestíbulo como espacio expositivo para mostrar dos "joyas" de sus fondos, los Códices Madrid I y Madrid II de Leonardo da Vinci.
Redactados en torno a 1500 con su escritura inversa (era zurdo), los códices son los únicos que conserva España de la colección de manuscritos que llegó a Madrid a principios del XVII: El Códice I es un tratado de mecánica y estática mientras que el II es un estudio de fortificación, estática y geometría.
Aunque la exposición permanecerá abierta hasta el 19 de mayo de 2019, los códices originales solo podrán ser contemplados un mes, en el que se irán alternando, para garantizar su adecuada conservación, ha indicado la directora de la BNE, que ha explicado que luego serán sustituidos por sus facsímiles.
Acompañarán a estos dos volúmenes otras 32 obras de la colección de la BNE que contextualizan las vida y obras de Leonardo da Vinci, así como reconstrucciones de máquinas dibujadas en los códices por el maestro y de uno de los mayores proyectos que acometió, el enorme caballo diseñado para Ludovico Sforza.
https://www.eldiario.es/cultura/Madrid-Leonardo-Codices-Tavola-Lucana_0_840616533.html |
|
|
Reply |
Message 74 of 86 on the subject |
|
|
|
Reply |
Message 75 of 86 on the subject |
|





LLAVE DE ORO Y DE PLATA AL IGUAL QUE LA MANZANA
Incendio Notre Dame: Última hora de la catedral de París (15 DE ABRIL)
 Incendio Notre Dame (París), en directo (Bertrand Guay / AFP)
PHI A NOTRE-DAME
A la catredal de Notre Dame hi observem més rectanlges auris: Creat per Mario Pastor 
The DaVinci Code, Notre Dame Cathedral from DaVinci Code
original movie prop












August 23, 2018/
The Golden Section (aka Golden Mean, and Golden Ratio) phys.org
We use math in architecture on a daily basis to solve problems. We use it to achieve both functional and aesthetic advantages. By applying math to our architectural designs through the use of the Golden Section and other mathematical principles, we can achieve harmony and balance. As you will see from some of the examples below, the application of mathematical principles can result in beautiful and long-lasting architecture which has passed the test of time.
Using Math in Architecture for Function and Form
We use math in architecture every day at our office. For example, we use math to calculate the area of a building site or office space. Math helps us to determine the volume of gravel or soil that is needed to fill a hole. We rely on math when designing safe building structures and bridges by calculating loads and spans. Math also helps us to determine the best material to use for a structure, such as wood, concrete, or steel.
“Without mathematics there is no art.” – Luca Pacioli, De divina proportione, 1509
Architects also use math when making aesthetic decisions. For instance, we use numbers to achieve attractive proportion and harmony. This may seem counter-intuitive, but architects routinely apply a combination of math, science, and art to create attractive and functional structures. One example of this is when we use math to achieve harmony and proportion by applying a well-known principle called the Golden Section
Math and Proportion – The Golden Section
Perfect proportions of the human body – The Vitruvian Man – by Leonardo da Vinci.
We tend to think of beauty as purely subjective, but that is not necessarily the case. There is a relationship between math and beauty. By applying math to our architectural designs through the use of the Golden Section and other mathematical principles, we can achieve harmony and balance.
The Golden Section is one example of a mathematical principle that is believed to result in pleasing proportions. It was mentioned in the works of the Greek mathematician Euclid, the father of geometry. Since the 4th century, artists and architects have applied the Golden Section to their work.
The Golden Section is a rectangular form that, when cut in half or doubled, results in the same proportion as the original form. The proportions are 1: the square root of 2 (1.414) It is one of many mathematical principles that architects use to bring beautiful proportion to their designs.
Examples of the Golden Section are found extensively in nature, including the human body. The influential author Vitruvius asserted that the best designs are based on the perfect proportions of the human body.
Over the years many well-known artists and architects, such as Leonardo da Vinci and Michelangelo, used the Golden Section to define the dimensions and proportions in their works. For example, you can see the Golden Section demonstrated in DaVinci’s painting Mona Lisa and his drawing Vitruvian Man.
Famous Buildings Influenced by Mathematical Principles
Here are some examples of famous buildings universally recognized for their beauty. We believe their architects used math and the principals of the Golden Section in their design:
Parthenon
The classical Doric columned Parthenon was built on the Acropolis between 447 and 432 BC. It was designed by the architects Iktinos and Kallikrates. The temple had two rooms to shelter a gold and ivory statue of the goddess Athena and her treasure. Visitors to the Parthenon viewed the statue and temple from the outside. The refined exterior is recognized for its proportional harmony which has influenced generations of designers. The pediment and frieze were decorated with sculpted scenes of Athena, the Gods, and heroes.
Parthenon Golden Section
Notre Dame Cathedral in Paris
Built on the Ile de la Cite, Notre Dame was built on the site of two earlier churches. The foundation stone was laid by Pope Alexander III in 1163. The stone building demonstrates various styles of architecture, due to the fact that construction occurred for over 300 years. It is predominantly French Gothic, but also has elements of Renaissance and Naturalism. The cathedral interior is 427 feet x 157 feet in plan. The two Gothic towers on the west façade are 223 feet high. They were intended to be crowned by spires, but the spires were never built. The cathedral is especially loved for its three stained glass rose windows and daring flying buttresses. During the Revolution, the building was extensively damaged and was saved from demolition by the emperor Napoleon.
Notre Dame Cathedral in Paris
Taj Mahal
Built in Agra between 1631 and 1648, the Taj Mahal is a white marble mausoleum designed by Ustad-Ahmad Lahori. This jewel of Indian architecture was built by Emperor Shah Jahan in memory of his favorite wife. Additional buildings and elements were completed in 1653. The square tomb is raised and is dramatically located at the end of a formal garden. On the interior, the tomb chamber is octagonal and is surrounded by hallways and four corner rooms. Building materials are brick and lime veneered with marble and sandstone.
Taj Mahal designed by Ustad-Ahmad Lahori
As you can see from the above examples, the application of mathematical principles can result in some pretty amazing architecture. The architects’ work reflects eye-catching harmony and balance. Although these buildings are all quite old, their designs have pleasing proportions which have truly passed the test of time.
https://bleckarchitects.com/math-in-architecture/
|
|
|
|
|
Reply |
Message 76 of 86 on the subject |
|
|
|
Reply |
Message 77 of 86 on the subject |
|
|
|
Reply |
Message 78 of 86 on the subject |
|
|
|
Reply |
Message 79 of 86 on the subject |
|
Thanks for all the tips mentioned in this article! it’s always good to read things you have heard before and are implementing, but from a different perspective, always pick up some extra bits of information.
|
|
|
Reply |
Message 80 of 86 on the subject |
|
I would like to thank you for the high level and informative article with us. I hope you and we will sharing more idea's and the keep writing more like this one.
|
|
|
Reply |
Message 81 of 86 on the subject |
|
|
|
Reply |
Message 82 of 86 on the subject |
|
|
|
Reply |
Message 83 of 86 on the subject |
|
This is really an amazing article. Your article is really good and your article has always good content with a good powerpoint with informative information.
|
|
|
Reply |
Message 84 of 86 on the subject |
|
|
|
Reply |
Message 85 of 86 on the subject |
|
|
|
Reply |
Message 86 of 86 on the subject |
|
Fibonacci 24 Repeating Pattern
May 15, 2012 by Gary Meisner
The Fibonacci sequence has a pattern that repeats every 24 numbers.
Numeric reduction is a technique used in analysis of numbers in which all the digits of a number are added together until only one digit remains. As an example, the numeric reduction of 256 is 4 because 2+5+6=13 and 1+3=4.
Applying numeric reduction to the Fibonacci series produces an infinite series of 24 repeating digits:
1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9
If you take the first 12 digits and add them to the second twelve digits and apply numeric reduction to the result, you find that they all have a value of 9.
1st 12 numbers |
1 |
1 |
2 |
3 |
5 |
8 |
4 |
3 |
7 |
1 |
8 |
9 |
2nd 12 numbers |
8 |
8 |
7 |
6 |
4 |
1 |
5 |
6 |
2 |
8 |
1 |
9 |
Numeric reduction – Add rows 1 and 2 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
18 |
Final numeric reduction – Add digits of result |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
This pattern was contributed both by Joseph Turbeville and then again by a mathematician by the name of Jain.
We would expect a pattern to exist in the Fibonacci series since each number in the series encodes the sum of the previous two. What’s not quite so obvious is why this pattern should repeat every 24 numbers or why the first and last half of the series should all add to 9.
For those of you from the “Show Me” state, this pattern of 24 digits is demonstrated in the numeric reduction of the first 73 numbers of the Fibonacci series, as shown below:
Fibonacci Number
|
Numeric reduction by adding digits |
1st Level |
2nd Level |
Final Level |
Example: 2,584 |
2+5+8+4=19 |
1+9=10 |
1+0=1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
2 |
3 |
3 |
3 |
3 |
5 |
5 |
5 |
5 |
8 |
8 |
8 |
8 |
13 |
4 |
4 |
4 |
21 |
3 |
3 |
3 |
34 |
7 |
7 |
7 |
55 |
10 |
1 |
1 |
89 |
17 |
8 |
8 |
144 |
9 |
9 |
9 |
233 |
8 |
8 |
8 |
377 |
17 |
8 |
8 |
610 |
7 |
7 |
7 |
987 |
24 |
6 |
6 |
1,597 |
22 |
4 |
4 |
2,584 |
19 |
10 |
1 |
4,181 |
14 |
5 |
5 |
6,765 |
24 |
6 |
6 |
10,946 |
20 |
2 |
2 |
17,711 |
17 |
8 |
8 |
28,657 |
28 |
10 |
1 |
46,368 |
27 |
9 |
9 |
75,025 |
19 |
10 |
1 |
121,393 |
19 |
10 |
1 |
196,418 |
29 |
11 |
2 |
317,811 |
21 |
3 |
3 |
514,229 |
23 |
5 |
5 |
832,040 |
17 |
8 |
8 |
1,346,269 |
31 |
4 |
4 |
2,178,309 |
30 |
3 |
3 |
3,524,578 |
34 |
7 |
7 |
5,702,887 |
37 |
10 |
1 |
9,227,465 |
35 |
8 |
8 |
14,930,352 |
27 |
9 |
9 |
24,157,817 |
35 |
8 |
8 |
39,088,169 |
44 |
8 |
8 |
63,245,986 |
43 |
7 |
7 |
102,334,155 |
24 |
6 |
6 |
165,580,141 |
31 |
4 |
4 |
267,914,296 |
46 |
10 |
1 |
433,494,437 |
41 |
5 |
5 |
701,408,733 |
33 |
6 |
6 |
1,134,903,170 |
29 |
11 |
2 |
1,836,311,903 |
35 |
8 |
8 |
2,971,215,073 |
37 |
10 |
1 |
4,807,526,976 |
54 |
9 |
9 |
7,778,742,049 |
55 |
10 |
1 |
12,586,269,025 |
46 |
10 |
1 |
20,365,011,074 |
29 |
11 |
2 |
32,951,280,099 |
48 |
12 |
3 |
53,316,291,173 |
41 |
5 |
5 |
86,267,571,272 |
53 |
8 |
8 |
139,583,862,445 |
58 |
13 |
4 |
225,851,433,717 |
48 |
12 |
3 |
365,435,296,162 |
52 |
7 |
7 |
591,286,729,879 |
73 |
10 |
1 |
956,722,026,041 |
44 |
8 |
8 |
1,548,008,755,920 |
54 |
9 |
9 |
2,504,730,781,961 |
53 |
8 |
8 |
4,052,739,537,881 |
62 |
8 |
8 |
6,557,470,319,842 |
61 |
7 |
7 |
10,610,209,857,723 |
51 |
6 |
6 |
17,167,680,177,565 |
67 |
13 |
4 |
27,777,890,035,288 |
73 |
10 |
1 |
44,945,570,212,853 |
59 |
14 |
5 |
72,723,460,248,141 |
51 |
6 |
6 |
117,669,030,460,994 |
65 |
11 |
2 |
190,392,490,709,135 |
62 |
8 |
8 |
308,061,521,170,129 |
46 |
10 |
1 |
498,454,011,879,264 |
72 |
9 |
9 |
Thanks to Joseph Turbeville for sending “A Glimmer of Light from the Eye of a Giant” and to Helga Hertsig for bringing Jain’s discovery of this pattern to my attention.
Filed Under: Math
https://www.goldennumber.net/fibonacci-24-pattern/ |
|
|
First
Previous
72 a 86 de 86
Next
Last
|