Viajes transdimensionales, mundos paralelos, agujeros negros, universos-membrana, teoría de cuerdas… La moderna física teórica se adentra cada vez con más firmeza en el mundo de lo mágico, de lo imposible. Y en sus ecuaciones la realidad y la fantasía se confunden.
Los escritores de ciencia-ficción suelen especular con la posibilidad de que existan universos paralelos. La existencia de múltiples dimensiones ha sido una idea recurrente en este tipo de relatos. Sin embargo este planteamiento ha dejado de ser una mera especulación para convertirse en una posibilidad que debe ser investigada por la ciencia.

UNA CUESTION DE PROBABILIDADES
Los modelos matemáticos que algunos astrofísicos emplean para entender la complejidad del universo y comprender su existencia y funcionamiento pasa por admitir la posibilidad de que, siendo aquel infinito, también lo serían las dimensiones que existen en él. En efecto, en un universo infinito que se expande en infinitas direcciones, también las posibilidades de que un hecho suceda son infinitas. Así, por plantearlo en términos muy simples, existe la posibilidad de que yo exista tal y como estoy configurado y me reconozco a mí mismo, cada vez que me miro al espejo. Pero también existe la posibilidad de que yo exista en un infinito número de configuraciones y circunstancias diferentes. Sería una cuestión simplemente de probabilidades.
Todo cuanto nos rodea está formado por una unidad básica de materia que conocemos con el nombre de átomo. Cualquier ser humano, por ejemplo, es un conjunto de átomos agrupados bajo un determinado patrón que configuran lo que nosotros identificamos como nuestra identidad.
Imaginemos que estamos paseando por luna playa formada por grava (a nuestros efectos, descartaremos la simple arena y tomaremos unos granos más gruesos pero sin llegar al tamaño de una roca). Si prestamos un poco de atención, nos será fácil reconocer una combinación o patrón formado por dos o tres piedrecitas de un determinado color. Quizás una sea negra, otra blanca y otra algo más clara, cristalina. Si caminamos un poco más y somos pacientes, acabaremos encontrando una combinación o patrón idéntico: una piedra negra, otra blanca y otra más cristalina. Si decidimos complicar un poco más esa búsqueda e incluir una combinación de, por ejemplo, seis o siete piedras, es seguro que deberemos abarcar mayor distancia (esto es, deberemos dedicar más tiempo) para encontrarla pero en la inmensidad de la playa, repleta de piedras de tamaños y colores distintos, la acabaremos encontrando. Con este simple experimento hemos podido comprobar cómo en un determinado espacio los patrones o combinaciones de átomos que conforman la materia, se repiten. La forma como están organizados estos átomos en el espacio determina la cualidad de la materia. Es decir, la forma en que nuestros átomos están combinados determina quienes somos.
Ciertamente, en el caso de un ser humano, el patrón que conforma una determinada identidad es muchísimo más complejo pues no en vano el cuerpo de un humano corriente está formado por miles de millones de átomos. Consecuentemente, para hallar otro patrón igual que replique un ser humano en otro de forma idéntica, deberíamos abarcar una enorme distancia en el espacio. Pero, al fin y al cabo es una cuestión meramente de distancia, de probabilidades si se quiere, pero hemos de recordar que el universo es infinito. Así que, por puro razonamiento lógico, ese patrón debe de estar en algún lugar de ese infinito universo.
¿Una hipótesis absurda? No para los científicos del MIT que han calculado que la distancia en años que habría que recorrer en el espacio para encontrar dos patrones idénticos, es decir, la réplica de cualquier ser humano que habita en el planeta Tierra (de Ud. Por ejemplo) es absolutamente enorme, casi inimaginable, pero calculable en tiempo: un 1 seguido de un trillón de ceros. Pero es que estamos hablando de un universo infinito…
La primera dificultad con la que se encontraría ese hipotético Indiana Jones galáctico es que el universo, según el modelo matemático comúnmente aceptado, no es algo estático. Tal y como ya enunció Edmond Huble, nuestro universo se expande de manera que en el recorrido que debemos hacer para hallar la combinación exacta que conforme nuestro “alter ego” deberemos tener en cuenta esa velocidad de expansión. El problema es que a mayor distancia del objetivo que intentamos alcanzar, mayor es la velocidad “de fuga” del mismo, hasta que finalmente, dicha velocidad será superior a la de la luz, límite hipotético al que podemos viajar, con lo cual nunca llegaremos a ver, ni en consecuencia alcanzar, nuestro objetivo, situado más allá de nuestro horizonte visible. Dicho de otra manera, la hipotética replica de nuestro yo o, si se quiere, de nuestro mundo, estaría situada más allá de ese horizonte visible, en lugar en el que nunca, en nuestro estado actual de la materia, podemos alcanzar.
UN MUNDO SORPRENDENTE
Algunos científicos, sin embargo, opinan que estamos buscando en el lugar equivocado y que quizás no sea en la inmensidad del universo si no en ese microcosmos gobernado por las leyes de la física cuántica donde debemos centrar nuestros esfuerzos.
En el año 1925, el físico austríaco Erwin Schrödinger formuló lo que devendría en la ecuación central de la mecánica cuántica y que demostraba que dos partículas subatómicas podían ocupar dos lugares distintos en el espacio al mismo tiempo (bueno, en realidad eso no sería gran cosa si tenemos en cuenta que algunos santos católicos ya eran capaces de hacer eso, según la tradición religiosa). Ciertamente, los principios de la mecánica cuántica abren un mundo de infinitas posibilidades que nos permitiría entender fenómenos que, en nuestra ignorancia, asimilamos a la magia.
Frank Tipler es profesor de física y matemáticas en la Universidad de Tulane y autor, entre otros, del libro “La Física de la inmortalidad”. Tipler considera que la reinterpretación de la Ecuación de Schrödinger podría explicar el funcionamiento mismo del universo, la realidad tal y como la conocemos. Tal vez una hipótesis arriesgada pero ciertamente sugerente.
La física cuántica afirma que todas las posibilidades existen simultáneamente y que es la intervención del observador lo que hace que una de esas posibilidades tome realidad y colapse las otras. Dicho de otra forma, cuando en el ámbito de un experimento un observador realiza una determinada medición, existen infinitos universos posibles al mismo tiempo que colapsan en uno sólo en el momento en el que el experimentador interviene con su observación. Es decir, existirían infinitas posibilidades que se harían reales (colapsarían) sólo en el instante (o debido al instante) en el que el observador actúa.
Sin embargo, Frank Tipler considera que estos cálculos no serían consecuentes con la Ecuación de Schrödinger y con los principios de la mecánica cuántica. Tipler cree que cada posibilidad es una realidad… en un universo paralelo. Es decir, la realidad sería infinitamente múltiple y coexistiría una “superpuesta” a la otra, pero nosotros solamente seríamos conscientes de una realidad: la nuestra. Así, cada uno de nuestros alter ego existiría en ese universo paralelo, sería consciente de “su” realidad y totalmente ajeno a la realidad del resto de universos paralelos que se entrecruzarían en un mismo continuo espacio-tiempo.
Por expresarlo en términos experimentales, tras hacer una medición, cada uno de los elementos de cada uno de los universos paralelos estaría unido a un resultado particular. En un universo concreto los objetos sólo pueden verse en un solo lugar. Desde nuestra perspectiva el hecho de observar destruiría el resto de las posibilidades. Sin embargo, Tipler afirma que esas otras realidades no dejan de existir por el sólo hecho de que un observador haya escogido una de ellas. Si pudiéramos ver todos los universos a la vez, infinitos observadores efectuarían la misma medición al mismo tiempo y cada uno de ellos vería la realidad, “su realidad”, sin consciencia de la existencia de los otros.
Y si trasladamos este razonamiento a escala cósmica, resultaría que existen infinidad de planetas Tierra, cada uno de ellos, con infinidad de habitantes e historias distintas. Así podría existir un mundo idéntico al nuestro en el que, por ejemplo, Hitler habría ganado la guerra; otro en el que los dinosaurios no se habrían extinguido, otro en el que… y así hasta el infinito
El gran problema de esta teoría es que, hasta ahora, nadie ha conseguido observar ninguno de esos otros universos o, dicho de otra manera, nadie ha observado, por ejemplo, que alguien esté en dos sitios a la vez. La física cuántica explica este hecho razonando que de forma inevitable y automática, estamos efectuando constantemente mediciones: mirar cualquier objeto es una medición, respirar el aire y absorber las moléculas que contiene es otra medición, tocar un objeto, abrir la luz de la habitación… todo son mediciones que hace que colapse una realidad en detrimento de las otras.
LA MAQUINA CUANTICA
Para tratar de comprender las leyes de la mecánica cuántica, en el año 2010, los físicos Andrew Cleland y John Martinis de la Universidad de California en Santa Clara, consiguieron diseñar un simulador cuántico que recibió el reconocimiento de la prestigiosa revista Sciencie al mejor descubrimiento de ese año.
Según el artículo que publico Sciencie, Cleland y Martinis diseñaron una máquina cuyo fin era evitar que el experimento con ella realizada fuera susceptible de cualquier medición, para lo que debían conseguir el máximo aislamiento. Esta máquina consistía en una diminuta paleta metálica de semiconductor visible a simple vista y lo hicieron mover a un “ritmo cuántico”. Lo primero que tuvieron que hacer es enfriar la paleta hasta los -237 grados centígrados (el energético más bajo permitido por las leyes de la mecánica cuántica). Para ello utilizaron un refrigerador de dilución, para, a continuación, aumentar la energía del diminuto aparato en sólo un quantum para producir de este modo un estado de movimiento puramente cuántico-mecánico.
Es decir, dentro del refrigerador de dilución, los experimentadores dirigieron un simple quantum de energía hacia un electrodo. En esta circunstancia existe una posibilidad del 50% de retener la energía o de dejarlo pasar. Sorprendentemente, el electrodo recibió la energía y la dejo pasar al mismo tiempo y empezó a oscilar entre esas dos realidades. Es decir, la partícula estaba en dos lugares a la vez. El electrodo puede estar en un estado en el que no tiene energía o en un estado en el que tiene una de esas unidades de energía. Y en ese estado, que en realidad son dos al mismo tiempo, se obtiene una vibración de seis mil millones de veces por segundo.
Lo que este experimento vino a demostrar es que la mecánica cuántica gobierna también las leyes del universo: desde partículas subatómicas hasta enormes galaxias.
Hay diversas teorías que han tratado de explicar el resultado de este experimento. Una de ellas es la de los universos paralelos. Sin embargo, ninguna de ellas es concluyente. Si existe un universo paralelo a nivel cuántico, el experimento de Cleland y Martinis podría ser el primer paso para detectar su existencia.
EL MISTERIO DE LA ANTIMATERIA
Otros científicos postulan que debemos investigar en los secretos de la antimateria para hallar indicios de la existencia de otros universos paralelos al nuestro. La antimateria que sería una forma de materia menos frecuente, está compuesta de antipartículas. Así un antielectrón y un antiprotón podrían formar un átomo de antimateria. La consecuencia trágica de todo esto es que el contacto entre materia y antimateria provoca su aniquilación mutua, una gran explosión, liberando fotones de alta energía llamados rayos gamma. El paradigma científico sostiene que en el origen del universo debió existir en idéntica proporción la misma cantidad de materia y antimateria. Siendo esto así, determinadas cantidades de materia y antimateria debieron chocar, anulándose mutuamente, liberando enormes cantidades de energía, pero otra cantidad de materia y antimateria aún no ha colisionado. Sin embargo, no hemos sido capaces de encontrar grandes cantidades de antimateria en el universo, lo que hoy en día representa un serio problema para verificar la realidad de dicha hipótesis.
Andrei Sajarov, postuló la posibilidad de que las leyes físicas que gobiernan el universo favorezcan la conservación de la materia por encima de la antimateria, y aunque en pequeñas cantidades, a lo largo de un proceso que dura miles de millones de años, la asimetría llegaría a ser más que notable.
Algunos científicos sostienen que deben existir enormes regiones del universo, que no hemos podido detectar, compuestas de antimateria. El problema es que no es posible, en nuestro actual estado de progreso tecnológico, detectar desde tan largas distancias, la presencia de estos “bancos” de antimateria. La posibilidad más inquietante y que defienden algunos científicos es que en realidad exista un universo de antimateria gemelo y paralelo al nuestro. Es decir, un anti universo. Esta última posibilidad implicaría que existe una amenaza en el espacio exterior susceptible de aniquilar el universo de materia que conocemos y, lo que es más preocupante: no sabemos exactamente dónde está este anti universo ni se está en rumbo de colisión hacia nosotros.
La física teórica, Joan Hewitt del Centro de Aceleración Lineal de Stanford, California, encabeza un ambicioso proyecto llamado “Fábrica B” que pretende localizar ese teórico universo de antimateria que debe existir ahí fuera y saber si materia y antimateria están en línea de colisión. Para ello, intenta recrear en el citado Acelerador Lineal, las condiciones del Big Bang primigenio. Mediante la colisión de partículas el equipo de Joan Hewitt creó unas partículas llamadas “mesones B” y su equivalente igual pero opuesto llamado “antimesones B”. El propósito del experimento era encontrar las sutiles diferencias entre ambos tipos de partículas mediante la observación del declive de ambas partículas en el tiempo. Pero el problema es que la vida de esas partículas es de apenas una trillonésima de segundo lo que hace que su observación y seguimiento sea algo increíblemente difícil. Sin embargo, Hewitt y su equipo descubrieron que el anti mesón se desintegra algo más rápido y de forma diferente al mesón.
Al colisionar entre si partículas y antipartículas, se fueron anulando mutuamente hasta que, al final y gracias a esa pequeña “ventaja” en el tiempo que tienen los mesones frente a los anti mesones , sólo quedó la cantidad de materia que hoy podemos observar en nuestro universo. (una ínfima parte de la materia primigenia). Es decir, la materia que hoy somos capaces de observar sería la “superviviente” de una gran “guerra cósmica” entre materia y antimateria, en la que el mayor tiempo de desintegración de las partículas que forman la materia le dieron la victoria sobre la antimateria. Hewitt, sin embargo, no está satisfecha con estos resultados y reconoce que esto no es suficiente para explicar de forma satisfactoria la cantidad total de antimateria que falta en el universo.
Dicho de otra forma: ahí afuera sigue existiendo un universo de antimateria del que sólo conocemos su existencia, pero nada más. Un anti universo, con una anti Tierra y una anti humanidad… todo un reto.
LA TEORIA INFLACIONARIA
El llamado modelo estándar del Big Bang sostiene que el universo nació hace unos 15.000 millones de años de una gran explosión inicial, una singularidad cósmica en la que la densidad y temperatura de la materia eran infinitamente altas. Para asumir esta teoría hay que aceptar que las teorías físicas conocidas no operaban en esa singularidad. Y encima dejaba muchas incógnitas sin despejar. Por ejemplo, esta teoría dejaba una pregunta sin respuesta que ha intrigado a los científicos ¿Por qué el universo se ve igual desde cualquier dirección en que miremos? Es decir, ¿Por qué el universo se nos muestra aparentemente uniforme? Porque una cosa es cierta, la extraordinaria rapidez con la que se produjo la expansión de la materia tras la explosión primigenia, hace imposible esa aparente uniformidad.
En 1981, Alan H. Guth del Instituto Tecnológico de Massachussets (MIT) formuló una teoría que afirmaba que estamos ante un universo inflacionario que se estaría expandiendo exponencialmente. Según la teoría del Big Bang, la expansión del universo perdería velocidad hasta que finalmente iniciaría una proceso contrario de contracción. Para la teoría inflacionaria, esto sucedería justamente al revés: la expansión del universo sería cada vez más rápida. Este proceso de inflación se producía mientras el universo primordial se encontraba en un llamado estado de superenfriamiento inestable (el fenómeno del superenfriamiento se produce cuando el agua es enfriada muy rápidamente, puede permanecer líquida muy por debajo de su temperatura habitual de congelación, para luego congelarse súbitamente, de inmediato). Para Guth superenfriamiento e inflación están estrechamente relacionados
La teoría inflacionaria de Guth afirma que el universo se estaría expandiendo de forma acelerada (inflación), siendo esta expansión o velocidad de separación superior a la velocidad de la luz. En realidad, lo que sucedería es que el espacio que existe entre los cuerpos celestes se expande más rápido que la luz pero dichos cuerpos permanecería en reposo en relación con él. De este modo se conseguía una explicación elegante que no violase la teoría de la relatividad, que prohíbe que cualquier cuerpo de masa finita se mueva más rápido que la luz.
Sin embargo, fue el propio Guth el que, nada más enunciar su teoría, vio una debilidad en este modelo. En ese universo primigenio, la transición de un estado superenfriado no debió producirse de forma simultánea por todo el espacio, sino en diferentes momentos y en diferentes lugares. Es decir, en coordenadas espacio temporales distintas. La consecuencia debió ser un universo con muchas burbujas de espacio-tiempo, cada una de ellas con leyes físicas propias y diferentes causadas por las distintas formas en las que se produjo la transición de fase dentro de ellas. Dichas burbujas debieron formar conglomerados s modo de racimos de uva. El problema es que no era eso lo que veían los astrónomos, cuando observaban el firmamento.
En verano de 1981, Andrei Linde, por entonces un joven físico de altas energías en el Instituto Lebedev de Moscú, halló que si las transiciones de fase en las diferentes partes del espacio-tiempo hubieran ocurrido de modo un poco más gradual que en la teoría de Guth, el resultado sería un universo libre de burbujas y de límites. En 1982 introdujo una nueva hipótesis del universo inflacionario basada en la observación de que la inflación es algo que surge de modo natural en muchas teorías de partículas elementales, incluyendo los modelos más simples de campos escalares. Linde elaboró la conocida como “teoría inflacionaria caótica” en la que argumentaba que nuestro universo es tan sólo uno más entre un conjunto, tal vez infinito, de universos en continua y eterna creación.
Según Linde, el universo primigenio previo al Big Bang debió ser como un diminuto cubo de masa infinitamente densa, rebosante de caótica energía. Cada microscópica porción de ese “terrón” debía ser un lugar (universo) distinto del otro. Es decir, la fuerza que creo nuestro universo debió crear múltiples universos paralelos. Para explicarlo pone un ejemplo. Imaginemos un terrón de azúcar que hemos pintado con colores diversos (rojo, azul, verde, amarillo, violeta etc.) de manera que cada una de las partes de ese terrón tiene un color distinto. Cuando el terrón se expande, un observador que esté situado en, por ejemplo, la parte de color rojo, lo verá todo rojo a su alrededor; un observador que esté situado en la parte pintada de verde, lo verá todo verde, es decir, percibirá la expansión de esa parte como algo uniforme. Cada parte, cada color, será como un universo independiente de las otras partes (pero todos ellos nacidos de un universo-madre) y así sería percibido por un hipotético observador, ajeno a la expansión de las otras partes (de otro color) del terrón. Y eso respondería a la pregunta de por qué el universo se ve igual desde cualquier punto que lo miremos.
Según el modelo de Linde, nuestro universo es algo inestable, en permanente expansión. Pero este proceso inflacionario no sería igual ni simultáneo en todas partes, incluso en alguna de ellas ni siquiera se ha producido proceso inflacionario alguno. De manera que los lugares en que ésta no se ha producido, permanecen extremadamente pequeños y densos y donde la inflación se produce, acaban siendo exponencialmente grandes y dominan el volumen total del universo. Es decir, el proceso inflacionario es continuo y puede iniciarse en cualquier momento y en cualquier parte, destruyendo todo cuanto encuentra a su paso; creando universos nuevos y destruyendo otros. Este modelo teórico permitiría que cada uno de esos universos pueda tener leyes físicas y dimensiones diferentes a las que nosotros conocemos en nuestro universo.
Teniendo en cuenta la arbitrariedad intrínseca de este modelo, Linde calificó esa hipótesis como “inflación caótica”.
Llevando sus teorías al límite, Andrei Linde y Vitaly Vanchurin en un artículo publicado en 2009 en la Physycal Review llegaron a calcular el número de universos paralelos existentes. En su estudio, Linde y Vanchurin concretaron esa cifra en un 10 elevado 10 elevado a 16. Esta cifra expresaría el total de posibles universos paralelos que la mente humana podría percibir, dado que la cantidad total de información que un individuo puede absorber en la vida es de unos 10 elevado a 16 bits (lo que equivale a 10 elevado a 10 elevado a 16 configuraciones), esto significa que un cerebro humano no puede distinguir más de 10 elevado a 10 elevado a 16 universos. Sin esta limitación, el número de universos sería de 10 elevado a 10 elevado a 10 elevado a 7… No está mal ¿verdad?