The 18th century church of Santa Maria della Maddalena (1763-90), better known simply as La Maddalena, was designed by the Venetian architect Tommaso Temanza (1705-89).
The entrance to the church is surmounted by the inscription SAPIENTIA AEDIFICAVIT SIBI DOMUM (Wisdom has built herself a home) and a curious image of an eye surrounded by an interlocking circle and triangle.
The all-seeing eye is one of the symbols of freemasonry and both the architect and the patron (a member of the Baffo family) of the church were freemasons.
The ancients selected the division of 360 degrees for a specific reason.
(Observe the outer ring of this complex Ying-Yang Chart having specifically 360 divisions).
The factors of the number 36 are: 1, 2, 3, 4, 6, 9, 12, 18, 36 indicating that it has an unusually large range of divisors and therefore more friends with other numbers.…
So irrational! Euler's identity = e ^ (ix) = cos x + i sin x As cos (pi) = -1 and sin (pi) = 0, e^(i.pi) = -1 + i.0 = -1 Hence, e^(i.pi) + 1 = 0
Unfortunately, it had to be said, this is very incorrect.
With Circle's diameter, also equal to (A * G) = Real_Pi = 3.144605511...
A = Base Cathetus = Diameter / G = 1.94347308702659 Nowhere close to Phi....
And B = Opposite Cathetus = A * SQRT (G) = 2.47213595499959
To get the correct measure for a circle’s diameter and to prove that Golden Pi = 4/√φ = 3.144605511029693144 is the true value of Pi by applying the Pythagorean theorem to all the edges of a Kepler right triangle when using the second longest edge length of a Kepler right triangle as the diameter of a circle then the shortest edge length of a Kepler right triangle is equal in measure to 1 quarter of a circle’s circumference. Also if the radius of a circle is used as the second longest edge length of a Kepler right triangle then the shortest edge length of a Kepler right triangle is equal to one 8th of a circle’s circumference:
Example 1:
The circumference of the circle is 12 but the measure for the diameter of the circle is not yet known. To discover the measure for the diameter of the circle apply the Pythagorean theorem to both 1 quarter of the circle’s circumference and also the result of multiplying 1 quarter of the circle’s circumference by the Golden ratio of Cosine (36) multiplied by 2 = 1.618033988749895. Divide the diameter of the circle by the square root of the Golden ratio = 1.272019649514069 to confirm that the edge of the square that has a perimeter that is equal to the numerical value for the circumference of the circle is equal to 1 quarter of the circle’s circumference.
Multiply the edge of the square by 4 to also confirm that the perimeter of the square has the same numerical value as the circumference of the circle.
Divide the measure for the circumference of the circle by the measure for the diameter of the circle to discover the true value of Pi. Multiply Pi by the diameter of the circle to also confirm that the circumference of the circle has the same numerical value as the perimeter of the square.
The second longest edge length of a Kepler right triangle is used as the diameter of a circle in this example. 12 divided by 4 is 3 so the shortest edge length of the Kepler right triangle is 3. The hypotenuse of a Kepler right triangle divided by the shortest edge length of a Kepler right triangle produces the Golden ratio of Cosine (36) multiplied by 2 = 1.618033988749895.
According to the Pythagorean theorem the hypotenuse of any right triangle contains the sum of both the squares on the 2 other edges of the right triangle.
The shortest edge length of the Kepler right triangle is 3 and since the ratio gained from dividing the hypotenuse of a Kepler right triangle by the measure for the shortest edge of the Kepler right triangle is the Golden ratio of Cosine (36) multiplied by 2 = 1.61803398874989 then the measure for the hypotenuse of a Kepler right triangle that has its shortest edge length as 3 is 4.854101966249685. 4.854101966249685 divided by 3 is the Golden ratio of Cosine (36) multiplied by 2 = 1.618033988749895. The square root of the Golden ratio = 1.272019649514069
The square root of 14.562305898749058 is 3.816058948542208.
Remember that the second longest edge length of the Kepler right triangle is used as the diameter of a circle. The measure for both the second longest edge length of this Kepler right triangle and the diameter of the circle is 3.816058948542208.
Remember that the shortest edge length of this Kepler right triangle is 3 and is equal to 1 quarter of a circle’s circumference that has a measure of 12 equal units.
Circumference of circle is 12
Diameter of circle is 3.816058948542208.
Diameter of circle is 3.816058948542208 divided by the square root of the Golden ratio = 1.272019649514069 = 3 the edge of the square.
3 multiplied by 4 = 12.
The perimeter of the square = 12.
12 divided by 3.816058948542208 = Golden Pi = 3.144605511029693144.
4/√φ = Pi = 3.144605511029693144 multiplied by the diameter of the circle = 3.816058948542208 = 12.
The circumference of the circle is the same measure as the perimeter of the square.
4/√φ = 3.144605511029693144 is the true value of Pi.
En la catedral de Colonia se encuentran los que, según la tradición, son los restos de los Reyes Magos
En religión, una reliquia es alguna parte del cuerpo o de la ropa de un santo, la cual es objeto de veneración. Así, en todo el mundo hay reliquias de diferentes personajes, pero en Colonia, Alemania, se conservan la reliquias de tres de los personajes más importantes del catolicismo y la cultura popular: los Reyes Magos.
Foto de Alamy
La Catedral de Colonia
Colonia es la cuarta ciudad más grande de Alemania, y su mayor símbolo es su catedral, la cual es un edificio gótico de 157 metros que tardó mas de 600 años en ser terminado y que durante años fue la construcción más alta del mundo.
Foto de unesco.org
En la parte trasera del altar de este templo se encuentra una enorme caja dorada, o relicario, de más de un metro de ancho por metro y medio de largo que incluye tres sarcófagos en los que, según la tradición, se encuentran los restos de los Reyes Magos.
El relicario está hecho de madera, decorada con oro, plata y piedras preciosas, y las reliquias que contiene llegaron a Colonia en el siglo 12, como un obsequio de parte de Milán.
Una tradición católica
El origen de las reliquias se remonta al año 300 después de Cristo, cuando llegaron a Constantinopla, pero no hay alguna verificación histórica de su autenticidad, así que se trata de una tradición del mundo católico.
Foto de Internet
Debido a esto, desde el siglo XXII, Colonia es una de las ciudades que más peregrinos recibe en el mundo para observar esta impresionante catedral gótica y admirar el relicario con los restos de los Reyes Magos, de cuya existencia, por cierto, tampoco hay una firme evidencia histórica.
Así que es un misterio cómo le hacen los Reyes Magos para llegar puntualmente todas las madrugadas del 6 de enero a repartir juguetes a los niños de diferentes partes del mundo. Seguramente inician su camino en esta importante ciudad.
Y en México…
El segundo templo más importante del mundo para venerar a los Reyes Magos se encuentra en México.
Cada 6 de enero, cientos de peregrinos llegan a Tizimín, al noreste de Yucatán, para participar en el festejo más importante de esta ciudad y que se remontan al siglo 17.
Foto de IMER
La parroquia dedicada a los Reyes Magos que se localiza en Tizimín fue construida por los franciscanos en 1666.