الصفحة الرئيسية  |  إتصال  

البريد الإلكتروني

كلمة السر:

سجّل نفسك الآن

هل نسيت كلمتك السر؟

Secreto Masonico
 
مستجدات
  أدخل الآن
  جدول الرسائل 
  معرض الصور 
 الملفات والوتائق 
 الإحصاء والنص 
  قائمة المشاركين
 EL SECRETO DE LA INICIACIÓN 
 Procesos Secretos del Alma 
 Estructura Secreta del Ritual Masónico 
 Los extraños Ritos de Sangre 
 Cámara de Reflexiones 
 
 
  أدوات
 
General: JOHANNES KEPLER-"WHERE THERE IS MATTER, THERE IS GEOMETRY"
إختار ملف آخر للرسائل
الفقرة السابقة  الفقرة التالية
جواب  رسائل 1 من 34 في الفقرة 
من: BARILOCHENSE6999  (الرسالة الأصلية) مبعوث: 14/02/2016 16:53
 
20
BARILOCHENSE6999 14/02/2016 13:51
82
BARILOCHENSE6999 14/02/2016 13:50
55
BARILOCHENSE6999 14/02/2016 13:49
65
BARILOCHENSE6999 14/02/2016 13:48
4
BARILOCHENSE6999 14/02/2016 13:48
82
BARILOCHENSE6999 14/02/2016 13:43
66
BARILOCHENSE6999 14/02/2016 13:41
133
BARILOCHENSE6999 14/02/2016 13:37
10
BARILOCHENSE6999 14/02/2016 13:33
56
BARILOCHENSE6999 14/02/2016 13:29
2
BARILOCHENSE6999 14/02/2016 13:29
155
BARILOCHENSE6999 14/02/2016 13:25
19
BARILOCHENSE6999 14/02/2016 13:19
409
BARILOCHENSE6999 14/02/2016 13:13


أول  سابق  5 إلى 19 من 34  لاحق   آخر 
جواب  رسائل 5 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 08/08/2020 17:19

3.4 Phi and Right-angled Triangles - the Kepler Triangle

The German astronomer and mathematician Johannes Kepler (1571-1630) had a great interest in both Pythagorean triangles and the golden ratio which was known then mainly by the term used by Euclid "the division of a line into extreme and mean ratio":
Geometry has two great treasures; one is the Theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. 
The first we may compare to a measure of gold; the second we may name a precious jewel.
Mysterium Cosmographicum 1596
Here we have both together in a single unique triangle.

Pythagorean triangles are right-angled triangles that have sides which are whole numbers in size. Since the golden section, Phi, is not a pure fraction (it is irrational), we will not be able to find a Pythagorean triangle with two sides in golden section ratio.

However, there is as a right-angled triangle that does have sides in the golden ratio. It arises if we ask the question:

Is there a right-angled triangle with sides in geometric progression, that is 
the ratio of two of its sides is also the ratio of two different sides in the same triangle?
a ar arr sidesIf there is such a triangle, let its shortest side be of length a and let's use r as the common ratio in the geometric progression so the sides of the triangle will be a, ar, ar2
Since it is right-angled, we can use Pythagoras' Theorem to get:
(ar2)2 = (ar)2 + (a)2
a2r4 = a2r2 + a2
We can divide through by a2 :
r4 = r2 + 1
and if we use R to stand for r2 we get a quadratic equation:
R2 = R + 1 or
R2 – R – 1 = 0
which we can solve to find that
R = 
1 ± √5
2
  = Phi or –phi

1-rootPhi-Phi triangleSince R is r2 we cannot have R as a negative number, so
R = r2 = Phi so 
r = √Phi
The sides of the triangle are therefore
a, a √Phi, a Phi
and any right-angled triangle with sides in Geometric Progression has two pairs of sides in the same ratio √Phi and one pair of sides in the Golden Ratio!

 

We will meet this triangle and some interesting properties of its angles later on this page in the section on Trigonometry and Phi.

3.4.1 How to construct Kepler's Triangle

FIND G on AB with MG=MT

It is very easy to construct Kepler's Triangle if we start from a golden rectnagle as described above.... 
FIND G on AB with MG=MT

Make the golden rectangle... 
FIND G on AB with MG=MT

and draw a circle centred on one corner and having the longer side of the rectangle as radius... 
FIND G on AB with MG=MT

The point where the circle crosses the other longer side marks one vertex of Kepler's triangle, the centre of the last circle is another and the right angle of the rectangle is the third. 

  •  A trigonometric intersection D Quadling, Math. Gaz. (2005), Note 89.70
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/phi2DGeomTrig.html

جواب  رسائل 6 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 03/10/2020 02:47


جواب  رسائل 7 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 03/10/2020 03:08


جواب  رسائل 8 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 05/12/2020 11:49


جواب  رسائل 9 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 08/12/2020 17:30
Phi Pi Day
square circles
 
Golden Ratio in Square And Circles
pi, phi and 33 - DESENMASCARANDO LAS FALSAS DOCTRINAS - Gabitos
 
The BOOK Of PHI, vol 8: True Value Of Pi = JainPi = 3.144... - Jain 108
Geometric constructions of Phi in Circles
Unknown Squared Circle: More than meets the Eye (P7) | Squaring the circle,  Geometry design, Geometric patterns drawing
Added by @1karamba Instagram post π & φ ••••••• #Pi #π #jainpi #Phi #φ # circle #square #goldenproportion #goldenmean #divineproportion #proportion  #ratio #diameter #circumference #compass #squareandcompass  #squaringthecircle #geometry #sacredgeometry ...
 
Article 31: Number – The Triad – Part 5 – Triangles – Part 3 - Cosmic Core
 
Musings on the Geometric Properties of the Square and Compasses
MATHEMATICS | art-of-clay-taylor
Unity and Phi^3 - Page 3 - Reciprocal System Research Society
Squaring the Circle
PIDIGITS - 48 Golden Ratio Spirals
Squaring the circle - Wikipedia
 
Phi in the Great Pyramid | Sacred Geometry
 
The Kepler Triangle, Phi and Pi – Archimedes Lab Project
Pi Math Proof - Measuring Pi Squaring Phi
 
What The Dormouse Said: The Great Pyramid: Squaring the circle and showing  us that it really is square root of 3 and so much more
True Value of Pi = 3.144 - Jain 108
 
File:Using a Kepler triangle to construct a square that has about the same  area as a given circle.pdf - Wikipedia

جواب  رسائل 10 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 12/12/2020 10:23


جواب  رسائل 11 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 13/12/2020 19:26


جواب  رسائل 12 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 23/12/2020 21:11
True Value of Pi = 3.144 - Jain 108

جواب  رسائل 13 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 07/01/2021 23:50


جواب  رسائل 14 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 08/01/2021 12:54


جواب  رسائل 15 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 08/01/2021 12:55


جواب  رسائل 16 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 08/01/2021 20:20
Kepler triangle - Wikipedia

جواب  رسائل 17 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 08/01/2021 20:31
Golden ratios in Great Pyramid of Giza site topography

جواب  رسائل 18 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 08/01/2021 20:36
Appearances of Phi, the Golden Ratio, in the Solar System

جواب  رسائل 19 من 34 في الفقرة 
من: BARILOCHENSE6999 مبعوث: 09/01/2021 03:44



أول  سابق  5 a 19 de 34  لاحق   آخر 
الفقرة السابقة  الفقرة التالية
 
©2025 - Gabitos - كل الحقوق محفوظة